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Fracture flow simulation using a finite-difference lattice Boltzmann method
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We present numerical computations for single phase flow through three-dimensional digitized rock fractures
under varied simulated confining pressures appropriate to midcrustal depths. The computations are performed
using a finite difference, lattice Boltzmann method and thus simulate Navier-Stokes flow. The digitized fracture
data sets come from profiled elevations taken on tensile induced fractures in Harcourt granite. Numerical
predictions of fracture permeability are compared with laboratory measurements performed on the same frac-
tures. Use of the finite difference lattice Boltzmann method allows computation on nonuniform grid spacing,
enabling accurate resolution across the aperture width without extensive refinement in the other two directions.
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I. INTRODUCTION

Fluid flow in fractured rock is a subject of primary impo
tance in petroleum engineering and hydrogeology. In
simplest approximation, single phase fluid flow through
fracture can be described by Poiseuille flow between smo
parallel plates of separation~aperture width! h. In the parallel
plate model fluid flow obeys Darcy’s law@1#,

Q5
Ak

m
“P. ~1!

Our notation is standard:Q is the volumetric flow rate, the
outlet flow area isA5Lyh, m is the fluid viscosity,k is the
channel permeability, and“P is the fluid pressure gradien
driving the flow. For parallel plate flow

k5h2/12. ~2!

A fair amount of investigation has centered on develop
a modification of Eq.~2! which would be predictive for flow
in a real fracture; that is to say, one which accounts for
irregular surface profiles, alignment and partial contact
real fractures. Early measurements on smooth and ro
noncontacting surfaces were reviewed by Witherspoonet al.
@2# leading to the prediction

k5h2/~12f !, ~3!

whereh is now to be interpreted as mean aperture width a
the surface roughness factorf varied from 1.04 to 1.65. Pre
viously, Lomize@3# had proposed the experimental form

f 5116~dh/h!3/2, ~4!
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where dh is a measure of the surface roughness~asperite
heights!. Walsh and Brace@4# have proposedf 5T2, whereT
is a mean fracture tortuosity~ratio of actual to apparent pat
lengths!. Notable work by Brown@5–7# provided a statistical
quantification of fracture surfaces. More modern predictio
such as that by Zimmerman and Bodvarson@8#,

k5
h2

12S 12
3sh

2

2h2 D ~122C!, ~5!

incorporate higher-order statistical moment measures. H
sh is the standard deviation of the aperture width, andC is
the fractional contact area between the two surfaces. Am
other models, we mention that of Drazer and Koplik@9# that
is based upon two-dimensional lattice Boltzmann simu
tions in channels between artificially generated rough s
faces having small height variation.

Our interest is in numerical computation of real fractu
flow, specifically utilizing the lattice Boltzmann~LB! method
to approximate Navier-Stokes flow. Among the earliest n
merical computations of fracture flow were those by Brow
and co-workers@6,10# using finite difference solutions to
Reynolds equation. Ge@11# has recently introduced a gener
governing equation for fluid flow in a single fractur
bounded by rough surfaces. The governing equation redu
to Reynolds equation if variations in tortuosity and apertu
are small. Verberg and Ladd@12# have applied three-
dimensional LB computations to a digitized geometry o
tained by profiling real fractures. There however, the co
puted flow field was used primarily to compare th
performance of the second-order continuous bounce b
condition.

To our knowledge, no LB computations on fracture flo
have been compared with permeability measurements f
real data sets. Our purpose in this paper is to examine
performance of LB numerical simulation for permeabili
computation and to compare the results with experime
measurements taken on the same fracture samples
©2003 The American Physical Society08-1
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which the digitized computations are based. Both laborat
and computational results were obtained at several value
mean aperture.

Our underlying physical interest is the behavior of ro
fractures at midcrustal depths for which evidence@13# exists
of fracture permeabilities several orders of magnitude hig
than bulk permeability of most unfractured rock. Durha
et al. @14,15# have profiled laboratory-produced fracture su
faces and conducted permeability studies@15# under various
confining pressures~and hence mean apertures! appropriate
to midcrustal depths. Two of these profiled data sets h
been used in the numerical flow computations considere
this study.

The lattice Boltzmann method used in our computation
presented in Sec. II. Parallel plate validation studies
given in Sec. III. A description of the two data sets utilized
this study is presented in Sec. IV. Parallelization of the
scheme is addressed in Sec. V. Results from the LB sim
tions and comparison with laboratory measurements are
sented in Sec. VI. Discussion follows in Sec. VII.

II. THE FINITE DIFFERENCE LATTICE BOLTZMANN
SCHEME

The LB method has been used as a numerical method
simulating Navier-Stokes flow since its introduction in 19
@16#. Attractive features of the method include its handling
complicated geometries, appropriate for flow through por
media where wall boundaries are extremely irregular;
localization and ease of implementation of the computatio
scheme; and relative ease of parallelization, an added at
tion for massive computations. On the negative side are
extreme numbers of iterations typically needed to comp
steady state conditions; difficulties in implementing so
types of boundary conditions; and the limited range of phy
cal and chemical terms that can be modeled.

The LB method@16# is a finite difference method for solv
ing the Boltzmann equation for a discrete velocity distrib
tion,

] f i

]t
1ei•“ f i5V i1

bf•ei

Nbc2
, i 50, . . . ,N21. ~6!

f i(x,t), ei , andV i(x,t) are, respectively, the particle distr
bution function, the velocity, and the collision operator in t
i th direction at each space-time pointx,t. N is the number of
discrete directions considered in the model.bf(x,t) is an
external body force vector that will be used to simulate
pressure gradient to drive fluid motion;c denotes particle
speed; andNb denotes the number of the discrete directioni
that have nonzero projection ontobf . The LB method uses a
Bhathagar, Gross, and Krook@17# relaxation term instead o
a full nonlinear collision operator, specifically the singl
time relaxation approximation,V i52( f i2 f i

eq)/t. Here
f i

eq(x,t) is the local equilibrium population distribution andt
is the relaxation time. The first several velocity moments
the equilibrium population distribution must match those o
Maxwellian distribution to ensure macroscopic Navie
04670
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Stokes behavior@18#. From the particle distribution function
and velocities, macroscopic values for densityr and momen-
tum are defined by

r5 (
i 50

N21

f i , ~7!

ru5 (
i 50

N21

f iei . ~8!

In three-dimensions, we utilizeN527 directions~the so-
called 3D27Q model@19#.! In this model the discrete veloci
ties are

ei55
c~0,0,0!, i 50

c~61,0,0!,c~0,61,0!

c~0,0,61!, i 51, . . . ,6

c~61,61,0!,c~61,0,61!

c~0,61,61!, i 57, . . . ,18

c~61,61,61!, i 519, . . .,26.

~9!

The equilibrium particle distribution function is

f i
eq5CirS 11

3~ei•u!

c2
1

9~ei•u!2

2c4
2

3u•u

2c2 D ,

i 50, . . .,26, ~10!

where

Ci55
8/27, i 50

2/27, i 51, . . . ,6

1/54, i 57, . . . ,18

1/216, i 519, . . .,26.

~11!

Starting with a first order, upwind discretization of E
~6!,

f ~x1eiDt,t1Dt !5 f ~x,t !1V i1bf~x,t !•ei /~Nbc2!,

i 50, . . . ,N21, ~12!

a Chapman-Enskog expansion can be used@18# to show that
the macroscopic behavior of this isothermal model produ
the Navier-Stokes equations, plus terms of orderM2,

] tr1]arua5O~M2!, ~13!

r] tua1rub]bua52]aP1]b„m~]bua1]aub!…

1bf1O~M2! ~14!

with viscositym, Mach numberM, and Reynolds numberRe
given by

m5~t21/2!rcs
2 , ~15!

M5U/cs , ~16!
8-2
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Re[
rUL

m
5

UL

~t21/2!cs
2

. ~17!

U and L are, respectively, a macroscopic speed and len
scale characteristic of the flow. The sound speed for
model iscs5c/A3.

Note that Eq.~12! restrictsDxa5eiaDt, a51,2,3, im-
plying a uniform spatial grid spacing in all dimensions. F
higher-order accuracy, and to enable different grid spacin
each dimension, we utilize a second-order finite differen
lattice Boltzmann~FDLB! solver @20# in which central dif-
ferencing is used for the spatial derivatives in the convec
term,

] f

]xa
'Da

c [
f ~xa1Dxa ,t !2 f ~xa2Dxa ,t !

2Dxa
,

a51,2,3, ~18!

producing the spatial discretization

] f i

]t
52ei•~D1

c f i ,D2
c f i ,D3

c f i !2
1

t
~ f i2 f i

eq!1
bf•ei

Nbc2
.

~19!

The time discretization is done via second-order Run
Kutta

ki
05DtGi„f i~x,tn!,tn…, ~20!

ki
15DtGi„f i~x,tn!1ki

0 ,tn1Dt…, ~21!

f i~x,tn11!5 f i~x,tn!1 1
2 ~ki

01ki
1!, ~22!

where Gi( f i ,t) denotes the right-hand side of Eq.~19!. A
Chapman-Enskog expansion for Eq.~22! replicates@19# the
results of~13!–~17! with the replacement (t21/2)→t.

Initial conditions on the f i can be set by requiring
f i(x,0)5 f i

eq
„r(x,0),u(x,0)… using Eq.~10!. With an initial

velocity u50, Eq.~10! simplifies to partitioning the density
amongst theN discrete directions at each point according
the weightsCi . Boundary conditions are generally mo
problematic since the fundamental quantitiesf i in Eq. ~6! are
not the same as the macroscopic variables in which boun
conditions are usually formulated. Three boundary con
tions concern us in our computations, the solid rock w
defining the upper and lower limits of the fracture~the z
direction!; the inlet-outlet boundary conditions in the flo
direction ~the x direction!; and the flow seal restraining th
fracture flow in they direction.

Periodic boundary conditions are the easiest to implem
in LB calculations. We, therefore, use periodic bounda
conditions on they direction endplanes of the fracture~per-
pendicular to the flow direction! to approximate the flow
seal. The body force term, used to mimic a pressure grad
bf5“P driving the flow, obviates the need to explicitly s
separate pressures at inlet and outlet. Thus periodic boun
conditions were also used for the inlet-outlet. Using perio
boundary conditions creates a problem when simulating
04670
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fractures, since geometries of the fracture at the two e
involved will not be in alignment. Our solution is to doub
the fracture in each periodic direction by attaching a mir
image of the fracture at one end. The new fracture is n
twice the length, but with geometrically matching end
Since we impose periodic boundary conditions in thex andy
directions, this expands the computational volume by a f
tor of 4; clearly an expensive option in terms of memory a
CPU time. We address this problem using parallel compu
tion.

The implementation of no-slip wall-boundary condition
has been the subject of some discussion. The bounce-
scheme is one of the most popular implementations for co
plex wall geometries; when streaming to a wall node,
particle distribution scatters back to the node whence
came. Bounce back is locally first-order accuracy at bou
aries@21#. A number of other schemes have been propo
@22–25#. We have found these schemes to be complicate
implement for irregularly shaped boundaries and have
stead implemented the following scheme for updating w
boundary nodes and enforcing no slip.

~1! An intermediate solutionf̂ i(xb ,t1Dt) is generated at
a wall boundary pointxb using Eqs.~20!–~22! with the ex-
ception that any second-order derivativeDc

a in Gi(•••,
•••) is replaced by a first-order upwind derivative

] f

]xa
'Da

up[
f ~xa1Dupxa ,t !2 f ~xa ,t !

Dupxa

,

a51,2,3, ~23!

whenever a node internal to the wall would be required
the central difference formula~18!. Nodes internal to the
wall are, therefore, avoided in implementing spatial diffe
encing.

~2! Final update values for each wall-boundary node
then computed as appropriate averages off̂ values

f i~xb ,t1Dt !5 f ī ~xb ,t1Dt !

5@ f̂ i~xb ,t1Dt !1 f̂ ī ~xb ,t1Dt !#/2, ~24!

where ī denotes the direction opposite toi. This ensures
explicit enforcement of no-slip momentum conditions
wall-boundary nodes.

We have not ascertained the overall order of accuracy
this mixed first- and second-order no-slip boundary con
tion. Using the validation computations described in the f
lowing section, we have ascertained that the boundary c
ditions produce more accurate computation of flow field
the vicinity of the wall boundary than simple bounce bac

III. PARALLEL PLATE VALIDATION STUDIES

We have validated our FDLB solver on a slight variatio
of a standard problem; we consider steady state Poise
flow between parallel plates separated by distanceLz with
the addition of a rectangular neck of widthh placed in the
flow path. The channel geometry is shown in Fig. 1. Flow
8-3
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KIM, LINDQUIST, AND DURHAM PHYSICAL REVIEW E 67, 046708 ~2003!
induced by a constant body force in thex direction; periodic
boundary conditions are used for the inlet-outlet andy direc-
tions; the wall boundary condition is used at the plate s
faces.

The analytic solution„ux(z),0,0… for the velocity is
known for the caseh5Lz ,

ux~z!5umax4
z

Lz
S 12

z

Lz
D , zP@0,Lz#, ~25!

whereumax5Lz
2u“Pu/(8m).

Figure 2 compares the prediction of Eq.~25! with the
computational result forux(x55,y55,z), for a fluid having
c51 mm/sec and densityr51023 gm/mm3 driven by a
pressure gradientu“Pu51026 gm/mm sec2. Two fine grid
computations are shown, forRe50.1 andRe51. ~The com-
putational result is virtually independent of thex,y coordi-
nate of the point of comparison.!

The computation was declared to have reached ste
state when the relative change in theL2 norm of the time
step velocity difference was less than input tolerance,

A(
x

uu~x,t1Dt !2u~x,t !u2

A(
x

uu~x,t !u2

<tol. ~26!

FIG. 1. The geometry of parallel plates, of separationLz , with a
rectangular constrictive slot of separationh.

FIG. 2. Comparison of analytic and FDLB computation for t
steady state Poiseuille flow between parallel plates. The comp
tional geometry isLx5Ly510 mm, andLz51 mm; the grid spac-
ings areDx5Dy51 mm andDz50.01 mm.
04670
r-
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These validation computations were done in double pre
sion; the value of tol was set to 1028.

Comparisons between computed and analytic predicti
of parallel plate permeability are shown in Fig. 3. The so
line is the analytic prediction~2! and points marked ‘‘x’’ are
computed results. Here the computational domain isLx
5Ly510, and Lz5h is variable; r51023 gm/mm3, t
51 sec,c51 mm/sec, andu“Pu51025 gm/mm sec2. The
agreement is excellent, given the coarseness of the gridDx
5Dy51, Dz50.2.

We now consider parallel plate flow through a constricti
neckh,Lz . Intuitively, for incompressible flow, the perme
ability should be dominated completely by the neck widthh.
This is confirmed in Fig. 3 that also plots~open and filled
circles! permeabilities computed for flows through constr
tive necks of variable widthsh. The permeability through the
constrictive parallel plate geometry is determined solely
the neck widthh, the resultant permeability is that equivale
to flow through an unconstricted parallel plate of widthh
5Lz .

An interesting steady state solution is obtained when
constriction is completely closed off. Computed velocity a
density fields are shown in Fig. 4 for the casesh5Lz , h
5Lz/3, and h50. If there is no constriction (h5Lz), the
steady state density is constant, and the flow modeled is
fectively incompressible. However, in the presence of fl
constrictions (h5Lz/3), density gradients appear. These de
sity gradients arise in direct response to the body force u
to drive the flow.

In the case in which the constriction is total, rather th
zero flow ~which would be expected when attempting
drive incompressible fluid under pressure gradient into
closed fracture! the numerical solution shows two counte
rotating vortices. The rotating vortices set up a netx compo-
nent of flux as summarized in the last row of Table I. In t
case of complete flow constriction, the density gradients
achieved through the establishment of counter-rotating vo
ces. The presence of the density gradient is presumably
to the O(M2) compressibility error terms in Eqs.~13! and
~14! by which the LB method deviates from incompressib
Navier-Stokes flow. As long as the constrictive channel
open, theO(M2) terms remain ‘‘small.’’ When through flow

ta-

FIG. 3. Permeability vs the smallest channel width between p
allel plates. The solid curve represents the analytical, parallel p
solution, with separationh. x represents computed results for para
lel plates of separationh ~no flow constriction!. Circular points
represent computed results for parallel plate of separationLz with a
restricted neck of widthh,Lz .
8-4
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FIG. 4. Mid-fracture transects of the~left! velocity field projected onto thexz plane and~right! density (gm/mm3) for steady state flow
though constrictive neck geometry of Fig. 1. The domain considered is 1031039 mm3. The illustrated computations are on a coarse g
Dx5Dy5Dz51 mm.
046708-5
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TABLE I. Total flux (mm3/sec) through the constrictive plate cross section as a function of distanx
along the flow direction. Numbers in brackets indicate power of ten.

h x ~mm!

~mm! 0 2 4 5 6 8 10

9 9.896 9.896 9.896 9.896 9.896 9.896 9.896
3 1.146 1.097 1.106 1.161 1.222 1.201 1.146
0 2.4@25# 1.48@24# 0.0 0.0 0.0 2.37@24# 2.4@25#
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is impossible, theO(M2) terms become dominant and driv
the flow into a solution regime incorrect for incompressib
flow.

IV. PROFILED HARCOURT GRANITE FRACTURES

Laboratory measured geometrical and permeability d
were obtained for a fracture in Harcourt granite~HG!, a me-
dium to coarse grained granite from South Australia. A sin
tensile fracture was produced using the so-called ‘‘Brazilia
technique@26#. The sample consisted of a cylindrical co
fractured along its axis (x direction!. The core was approxi
mately 140 mm in diameter and 164 mm in length. We d
ignate thex direction to be along the core axis, and thez
direction to be ‘‘perpendicular’’ to the fracture surfaces.
1163128 mm2 area of the fracture was profiled at 1 m
spacing in both horizontal (x,y) directions@27#. Both upper
and lower faces of the fracture were profiled with horizon
registration between corresponding points on the two s
faces good to within 0.05 mm. Profile measurements (z di-
rection! are accurate to within 8mm. We refer to this data
set as the mated configuration, HG3.

A second set of geometrical and permeability data w
measured on the same rock, but with the two rock hal
shifted with respect to one another by 0.5 mm in thex ~flow!
direction. We refer to this as the offset configuration HG3
Note that the offset was achieved not by sliding, but by se
rating the mated rock halves, displacing one of them 0.5
in the axial direction, and then placing them back togeth
The profiles in the offset configuration were 11
3128 mm2, profiled again at 1 mm spacing.

Consider an arbitrary reference planez50. The upper
(1) and lower (2) surfaces of the fracture are described

z1~x,y!5h0
12h1~x,y!,

~27!
z2~x,y!5h0

21h2~x,y!.

Hereh0
1 andh0

2 arez values relative to whichh1 andh2 are
measured. The subtraction and addition asymmetries in
definitions ofz1 andz2 arise from a difference in sign con
vention for h1 and h2. h1 is defined to be positive in th
downward direction; h2 is defined to be positive in the up
ward direction. This convention derives from the laborato
profilometry used to measureh1 and h2. In profilometry,
the two rock halves are laid open, side by side, fracture
face upward, and profiles are taken on both halves.In this
profilometry configuration, h1 and h2 are defined with con-
sistent signs. The fracture aperture is
04670
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a~x,y;A![z1~x,y!2z2~x,y!,

5~h0
12h0

2!2~h11h2!,

[A2z~x,y!, ~28!

where the definitions ofA andz are clear from context.
Profilometry directly measuresh2(x,y) andh1(x,y), or

equivalently, their sumz(x,y). Determination of the constan
A needed to obtain the true, unconfined, fracture aper
a(•••) requires careful experimental registration of the tw
halves of the fracture when they are separated for profilo
etry, accurate measurements of the increased diamete
duced in the core after fracturing due to relaxation of stres
and to near-surface inelastic deformation associated w
fracturing, and estimation procedures to account for gaps
duced by small amounts of loose shattered material. S
accounting for the profiled configuration HG3 indicates
value ofA50.1960.03 mm.

We are interested in computationally varying the apertu
From Eq.~28! we can define a variable mathematical ap
ture

a~x,y;A,t ![A2t2z~x,y!. ~29!

The ‘‘push-down’’ t is an arbitrary parameter by which w
can artificially widen or contract the aperture of the fractu
~It mimics the variable confining pressure used in laborat
experiments to change the aperture width.! Note that ast
increases from zero, sections of the lower and upper surfa
begin to overlap, simulating contact. The overlap is unphy
cal; in real rock, under increasing confining pressure, ar
of contact between the two surfaces will locally deform in
complex manner.We ignore the presence of such deform
tion in our study. To compensate for overlapping portions
the surfaces under change inA, we redefine the variable ap
erturea as

a~x,y;A,t ![H A2t2z~x,y! if A2t2z~x,y!.0

0 otherwise.
~30!

From now on we shall refer toa(x,y;A,t) simply as the
aperture of our model fracture. We denote the mean aper
of a(•••) as am[^a(x,y;A,t)&, where the average is ove
all profiling locationsx,y. We define the fractional contac
areaC between the upper and lower surfaces of our mo
fracture as the fraction of sitesx,y for which a(x,y;A,t)
50 in Eq.~30!. For brevity, we shall refer toC as the contact
area.
8-6
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FRACTURE FLOW SIMULATION USING A FINITE- . . . PHYSICAL REVIEW E 67, 046708 ~2003!
Figure 5 plots the contact areaC between the two surface
as a function of mean apertuream for both mated and offse
configurations. It is important to note that theC(am) rela-
tionship in Fig. 5 is independent of choice of A. ~If A is
changed, then the push-downt required to achieve a specifi
value of am will also change, resulting in the sameam ,C
point in Fig. 5.! The C(am) relationship is solely a propert
of the measured profilez(x,y).

Our interest is in computing permeability as a function
mean aperture and comparing with laboratory measureme
Consequently it is useful to know at what contact area, co
plete loss of flow in the fracture can be expected.~This is
referred to as the percolation threshold of the fracture.!

The percolation threshold was estimated using me
axis analysis@28,29#. Briefly, for each value ofC, the medial
axis transform was used to trace all possible paths thro
the aperture connecting ‘‘inlet’’ to ‘‘outlet.’’ If any inlet-to-
outlet connection existed, the fracture was deemed cap
of supporting flow. Using a bisection search onC, bounding
values on the percolation threshold contact area for flo
separately in thex andy directions were obtained as show
in Table II.

Permeabilities were experimentally measured for H
and HG3F under steady state flow conditions using tap w
as a fluid. All measurements were made at room tempera
The outlet pressure was fixed at 0.1 MPa~1 atm!. For the
mated fracture, HG3, confining pressures varied from 0
MPa to 80 MPa, and pressure differences driving the fl
varied from 5 KPa at the lowest confining pressure, to
MPa at the highest. For the offset fracture HG3F confin
pressures varied from 0.1 MPa to 160 MPa, and pres
differences driving the flow varied from 120 Pa at the low
confining pressure to 4.4 KPa at the highest. Permeab
was determined from Eq.~1! using the cross sectional area
the cylindrical core face at the outlet. The laboratory perm
ability measurements on a fracture were performed as a

FIG. 5. Contact areaC as a function of mean aperture for th
two profiled configurations HG3~mated! and HG3F~offset!.

TABLE II. Bounding intervals determined for percolatio
threshold valuesCx and Cy of contact area inx and y directions,
respectively.

Cx Cy

HG3 ~0.441,0.467! ~0.623,0.646!
HG3F ~0.560,0.588! ~0.430,0.463!
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quence of measurements with confining pressureincreasing
for each new data point. Plastic strain and structural dam
preclude lowering confining pressure to check reproduci
ity. Typically each permeability measurement involved me
suring the time to flow 25 mL of water through the fractur

V. PARALLELIZATION

With the data profiled at 1 mm spacing in thex and y
directions, interpolation must be used if a finer numeri
horizontal grid spacing is desired. We avoid interpolation a
useDx5Dy51.0 mm. In the case of the mated configur
tion HG3, when the contact areaC50, the maximum value
of the aperture profile is maxx,y z(x,y)512.09 mm and the
mean aperture is 0.94 mm. At a near-percolation thresh
value ofC50.5, while the mean aperture of 0.09 mm is no
much smaller,zmax511.29 mm is still large. Thus with a
grid spacing ofDz50.05 mm, the numerical grid size wil
require 113106–143106 nodes.~Recall the doubling of the
fracture in thex and y directions to implement periodic
boundary conditions.! As a compromise between memo
requirement, CPU time, and communication cost, we st
four single precision floats f i

eq(•••,tn), f i(•••,tn),
f i(•••,tn1Dt) from Eq.~21!, andf i(•••,tn11) for each link
of each node. For 3D27Q, we, therefore, store 432 byte
information per node. Thus a naive computation giv
memory requirements of 6 Gbytes for a computation on
23232563243 node grid. A major savings in memory
accomplished by assigning no storage to any node lying
side of the open aperture region~with an exception for wall
boundary nodes!. Depending on the contact area, this r
duces memory requirements to 2 –16 % of the naive va
Even with this reduction, parallel implementation is require
Parallelization was done using nonoverlapping, ‘‘bre
slice,’’ domain decomposition in the flow direction. Loa
balancing was achieved by adjusting the widths of individ
domain slices so that the each contained approximately
same number of aperture nodes. Message passing was
with the MPI interface. Computations were performed on
Stony Brook Galaxy, a Beowolf class cluster having 2
Pentium processors, each processor having 512 Mbyte
RAM. Parallel performance of the FDLB implementation
discussed in Ref.@29#. Typically, a simulation required
nearly 340 h using 8 Pentium II processors to achieve ste
state @as determined by Eq.~26! with a tolerance tol
51025] in '105 iterations.

VI. NUMERICAL RESULTS

In parallel with the laboratory permeability measureme
performed on HG3 and HG3F, we numerically compu
the steady state flow of water (m50.001 Pa sec,r
50.001 gm/mm3) through the fracture. The particle speedc
required in the LB formulation was chosen as a multiple
the average velocity of the water measured in the co
sponding experiment. Mach numbers varied but were in
range from 1022 to 1021. While pressure gradients were n
available for all experimental measurements, pressure d
across the cylinder core were measured for the lowest
8-7



nt
e

om
a

lu
p
T
b

th
, t
th
tt

iti
l

n
he

la

ly

n-
d
on
n

a
g.

n-
f

o
t
e
n

of
-
e
m-
f a

t
ents
n-
at
t
3F
%

es-
re-
ata
0.2
as
to

n-
on-

lities
ri-

ry
ea-

s,
rme-
est
e of

ed
ime
log-
c-
g
lity
r
ver-

ent

KIM, LINDQUIST, AND DURHAM PHYSICAL REVIEW E 67, 046708 ~2003!
highest confining pressure runs. Pressure gradients for i
mediate confining pressures were approximated using lin
interpolation.

Figure 6 summarizes the comparison between the c
puted and measured values of permeability versus mean
erture for the mated fracture HG3. The mean aperture va
for the laboratory measurements are mechanical mean a
tures, computed from fracture closure measurements.
laboratory permeability measurements were normalized
the cross sectional area of the cylindrical core. Since
entire cross sectional area was not modeled numerically
numerical permeabilities were normalized to agree with
laboratory measurements at the highest mean aperture se
~lowest confining pressure on the fracture!. The numerical
permeabilities tend to exceed the experimental permeabil
~worst case is a factor of 10! but capture the experimenta
permeability trend very well.

The prediction of the parallel plate model, based upoh
5am , also shown in Fig. 6 does very poorly in capturing t
trend. So will Eq.~3! for any constant value off. This is
hardly unexpected, our simple constricted-neck parallel p
model would lead us to conclude thatam is a poor indicator
of the constrictive fracture width value that is effective
controlling the flow rate.

There is a problem in applying the Zimmerma
Bodvarson~ZB! prediction~5! to our fracture—the standar
deviation of the fracture aperture is 70% of the true, unc
fined, mean aperture and becomes larger than the mea
erture at 7% contact area (am50.13). Thus any factor of the
form 12a(sh /h)2 as used in Eq.~5! is going to have a
sharp ‘‘knee’’ behavior and very rapidly become negative
some mean aperture value. This is demonstrated in Fi
using a generalized ZB prediction

k5
h2

12S 12a
sh

2

h2 D ~122C!, ~31!

for parameter valuesa50.9,1.0. We also note that the co
tact area factor (122C) plays little role in the accuracy o
the fit ~31! to the experimental data.

For the offset data, HG3F, we have been unable to rec
cile the mechanical mean apertures measured during
laboratory experiments with the mathematical mean ap
tures computed from the profiled data. Offsetting the top a

FIG. 6. Comparison between computed~FDLBM!, experimental
~HG3!, parallel plate model, and Eq.~31! values of permeability
versus mean aperture for the mated Harcourt granite fracture.
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bottom surfaces of the fracture may require a recalibration
the constantA in Eq. ~28!. As mean aperture is a very sen
sitive variable~i.e., small errors result in comparatively larg
changes ink), we, therefore, compare measured and co
puted permeabilities for the offset fracture as a function o
more robust variable, the contact areaC. To estimate contac
areas for the offset configuration, we note that measurem
on a similar tensile-induced, offset fracture in Westerly gra
ite @14# found surface contact ratios of approximately 20%
confining pressures of 160 MPa.We therefore assume tha
the laboratory range of measured mean apertures for HG
correspond to surface contact ratios in the range 0 to 20
and presume a linear relationship between confining pr
sure and surface area contact for the laboratory measu
ments.~This assumption is also in accord with the mated d
HG3. From Fig. 6 note that mean apertures vary from
down to 0.1, which, from Fig. 5, correspond to contact are
from 0 to 10%. As the mated configuration was subjected
a maximum confining pressure of only 80 MPa, this is co
sistent with our contact area assumption for the offset c
figuration.!

Figure 7 compares measured and computed permeabi
for the offset fracture as a function of contact area. Nume
cal computations were performed atC50, 0.05, 0.1, 0.15,
and 0.2 and compare surprisingly well with the laborato
measurements. Note repeated laboratory permeability m
surements at several values ofC. For these measurement
the confining pressure was held constant and several pe
ability measurements taken over a period of time. The larg
set of measurements were taken at a confining pressur
140 MPa ~contact area of 0.175!, where five permeability
measurements were taken over a 5 hperiod. A slow decrease
in permeability with time is observed in all such repeat
measurements for this fracture. We postulate that the t
dependent decrease in permeability is due to increased c
ging resulting from the movement of fines, the clogging o
curring either in the fracture or in the fluid collection tubin
at the outlet. We further note that the set of permeabi
measurements taken atC50.2 were performed a day late
than the others; the confining pressure was removed o
night and then reapplied the next day.

VII. DISCUSSION

There are clearly several factors that affect the agreem
between the numerical and experimental results.

FIG. 7. Comparison between computed~FDLBM! and experi-
mental~HG3F! values of permeability versus contact areaC for the
offset Harcourt granite fracture.
8-8
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FRACTURE FLOW SIMULATION USING A FINITE- . . . PHYSICAL REVIEW E 67, 046708 ~2003!
One factor is the discretization of the fracture surfa
With profiling locations spaced at 1 mm, we are resolving
surface feature only above wavelengths of 1 mm; the ef
on flow for features below 1 mm wavelength is of unknow
magnitude. A second feature of discretization is the ‘‘Ma
hattan’’ skyline nature of a discretized surface, which ma
computation of surface-surface contact area easier, but
plifies the true ‘‘mountain’’ topography of a fracture surfac

Ignoring stresses induced in the surfaces when num
cally pushing the fracture surfaces together is a second
tor. The elastic and plastic changes so induced in the sur
profiles of a real fracture were not captured in the numer
aperture. The numerical ‘‘push-through’’ of the fracture s
faces also produces missing mass that remains unaccou
for.

The absence of recorded values for fluid pressure gr
ents for some of the experimental measurements, and
decision to use contact area as the comparing paramete
the offset data, lead to the use of linear interpolation to p
vide necessary numerical parameters. The error introduce
using the interpolated values is unknown.

The use of laboratory measured average water velo
values for the particle speeds required in the LB calculati
undoubtedly works in a manner to improve the accuracy
the calculations.

From the constrictive plate studies, we note that the p
ence of the compressibleO(M2) terms in the LB method
will cause density variations in the rough geometry apertu
J

te

d

Re
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The overall effect of these variations on the resultant flow
unknown.

While the LB implementation used here gives reasona
good permeability predictions, the computational cycles
quired to compute steady state flow are very large. Sev
steps can be implemented to improve the computatio
time. Use of the 15-velocity, 3D15Q,@25# should improve
the speed~and memory! by a factor of almost 2 without
accuracy loss. Use of direct inlet-outlet pressure conditi
@25# rather than imposing a body force to drive the flo
would obviate the need to double the domain in the fl
direction, again at a factor of two savings in speed a
memory. The time independent LB method developed in R
@30# would be expected to improve the computational perf
mance by a factor of 1–2 orders of magnitude, depending
mean aperture. It would be interesting to investigate all
these three improvements in the context of the noncons
grid spacing finite difference method.

ACKNOWLEDGMENTS

This work was supported by the Geosciences Program
the U.S. Department of Energy, Grant No. DE-FG0
92ER14261~I.K. and W.B.L.!; the Applied Mathematics
Subprogram of the U.S. Department of Energy, Grant N
DE-FG02-90ER25084~W.B.L.!; and the U.S. Department o
Energy under Contract No. W-7405-ENG-48 to Lawren
Livermore National Laboratory~W.B.D.!.
ys.

-

ci.

.F.
@1# R.L. Kranz, A.D. Frankel, T. Engelder, and C.H. Scholz, Int.
Rock Mech. Min. Sci. Geomech. Abstr.16, 225 ~1979!.

@2# P.A. Witherspoon, J.S.Y. Wang, K. Iwai, and J.E. Gale, Wa
Resour. Res.16, 1016~1980!.

@3# G.M. Lomize, Flow in Fractured Rocks~Gosenergoizdat,
Moscow, 1951!.

@4# J.B. Walsh and B.F. Brace, J. Geophys. Res. B89, 9425
~1984!.

@5# S.R. Brown and C.H. Scholz, J. Geophys. Res.90, 5531
~1985!.

@6# S.R. Brown, J. Geophys. Res.92, 1337~1987!.
@7# S.R. Brown, J. Geophys. Res.94, 9429~1989!.
@8# R.W. Zimmermann and G.S. Bodvarson, Transp. Porous Me

23, 1 ~1996!.
@9# G. Drazer and J. Koplik, Phys. Rev. E62, 8076~2000!.

@10# S.R. Brown, H.W. Stockman, and S.J. Reeves, Geophys.
Lett. 22, 2537~1995!.

@11# S. Ge, Water Resour. Res.33, 53 ~1997!.
@12# R. Verberg and A.J.C. Ladd, Phys. Rev. Lett.84, 2148~2000!.
@13# W.F. Brace, Int. J. Rock Mech. Min. Sci. Geomech. Abstr.17,

241 ~1980!.
@14# W.B. Durham and B.P. Bonner, J. Geophys. Res.99, 9391

~1994!.
.

r

ia

s.

@15# W.B. Durham, J. Geophys. Res.102, 18 405~1997!.
@16# G. McNamara and G. Zanetti, Phys. Rev. Lett.61, 2332

~1988!.
@17# P.L. Bhathagar, E.P. Gross, and M. Krook, Phys. Rev.94, 511

~1954!.
@18# J. Sterling and S. Chen, J. Comput. Phys.123, 196 ~1996!.
@19# X. He and L.S. Luo, Phys. Rev. E56, 6811~1997!.
@20# N. Cao, S. Chen, S. Jin, and D. Martinez, Phys. Rev. E55, R21

~1997!.
@21# I. Ginzbourg and P.M. Adler, J. Phys. II4, 191 ~1994!.
@22# P.A. Skordos, Phys. Rev. E48, 4823~1993!.
@23# D.R. Noble, S. Chen, J.G. Georgiadis, and R.O. Buckius, Ph

Fluids 7, 203 ~1995!.
@24# S. Chen, D. Martinez, and R. Mei, Phys. Fluids8, 2527~1996!.
@25# Q. Zou and X. He, Phys. Fluids9, 1591~1997!.
@26# J.C. Jaeger and N.G.W. Cook,Fundamentals of Rock Mechan

ics ~Chapman and Hall, London, 1976!.
@27# W.B. Durham and B.P. Bonner, Int. J. Rock Mech. Min. S

Geomech. Abstr.30, 699 ~1993!.
@28# W.B. Lindquist, A. Venkatarangan, J. Dunsmuir, and T

Wong, J. Geophys. Res. B105, 21509~2000!.
@29# I. Kim, Ph.D. thesis, Stony Brook University~2002!.
@30# R. Verberg and A.J.C. Ladd, Phys. Rev. E60, 3366~1999!.
8-9


