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Fracture flow simulation using a finite-difference lattice Boltzmann method
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We present numerical computations for single phase flow through three-dimensional digitized rock fractures
under varied simulated confining pressures appropriate to midcrustal depths. The computations are performed
using a finite difference, lattice Boltzmann method and thus simulate Navier-Stokes flow. The digitized fracture
data sets come from profiled elevations taken on tensile induced fractures in Harcourt granite. Numerical
predictions of fracture permeability are compared with laboratory measurements performed on the same frac-
tures. Use of the finite difference lattice Boltzmann method allows computation on nonuniform grid spacing,
enabling accurate resolution across the aperture width without extensive refinement in the other two directions.
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[. INTRODUCTION where 6h is a measure of the surface roughnéasperite
heights. Walsh and Bracf4] have proposefi=T?, whereT
Fluid flow in fractured rock is a subject of primary impor- is a mean fracture tortuosityatio of actual to apparent path

tance in petroleum engineering and hydrogeology. In thdengths. Notable work by Browri5—7] provided a statistical
simplest approximation, single phase fluid flow through aquantification of fracture surfaces. More modern predictions,
fracture can be described by Poiseuille flow between smoottsuch as that by Zimmerman and Bodvar$8h
parallel plates of separatidaperture widthh. In the parallel
plate model fluid flow obeys Darcy’s laji],

k= h2(1 3Uﬁ)(l 2C) (5)
Ak “12| 7 o) 1720
Q=—-VP. (1)

incorporate higher-order statistical moment measures. Here
oy, is the standard deviation of the aperture width, &hib
the fractional contact area between the two surfaces. Among
other models, we mention that of Drazer and KopbBk that
is based upon two-dimensional lattice Boltzmann simula-
tions in channels between artificially generated rough sur-
faces having small height variation.
Our interest is in numerical computation of real fracture
w, specifically utilizing the lattice Boltzman(i.B) method
to approximate Navier-Stokes flow. Among the earliest nu-
erical computations of fracture flow were those by Brown
nd co-workerg6,10] using finite difference solutions to
eynolds equation. Gd 1] has recently introduced a general
governing equation for fluid flow in a single fracture
bounded by rough surfaces. The governing equation reduces
K=h2/(12f) 3 to Reynolds equation if variations in tortuosity find aperture
- ' are small. Verberg and Lad@i12] have applied three-
dimensional LB computations to a digitized geometry ob-
whereh is now to be interpreted as mean aperture width andained by profiling real fractures. There however, the com-
the surface roughness factovaried from 1.04 to 1.65. Pre- puted flow field was used primarily to compare the
viously, Lomize[3] had proposed the experimental form  performance of the second-order continuous bounce back
condition.

f=1+6(sh/h)%? (4) To our knowledge, no LB computations on fracture flow
have been compared with permeability measurements from
real data sets. Our purpose in this paper is to examine the

Our notation is standard) is the volumetric flow rate, the
outlet flow area isA=Lh, w is the fluid viscosityk is the
channel permeability, an¥ P is the fluid pressure gradient
driving the flow. For parallel plate flow

k=h?/12. 2)

A fair amount of investigation has centered on developingﬂo
a modification of Eq(2) which would be predictive for flow
in a real fracture; that is to say, one which accounts for th
irregular surface profiles, alignment and partial contact o
real fractures. Early measurements on smooth and roug
noncontacting surfaces were reviewed by Witherspeioal.
[2] leading to the prediction
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which the digitized computations are based. Both laboratorytokes behavidrl8]. From the particle distribution functions
and computational results were obtained at several values aind velocities, macroscopic values for dengitgnd momen-
mean aperture. tum are defined by

Our underlying physical interest is the behavior of rock N_1
fractures at midcrustal depths for which evidept8] exists
of fracture permeabilities several orders of magnitude higher p= ;0 fi, @
than bulk permeability of most unfractured rock. Durham
et al.[14,15 have profiled laboratory-produced fracture sur- N-1
faces and conducted permeability studi&S] under various pu= >, fie. (8
confining pressure@nd hence mean apertuyregppropriate =0
to midcrustal depths. Two of these profiled data sets have

- - . - . In three-dimensions, we utilizl=27 directions(the so-
?hﬁsgtﬂ?j?d in the numerical flow computations considered Irc]alled 3D27Q moddl19].) In this model the discrete veloci-

The lattice Boltzmann method used in our computations i§|es are
presented in Sec. Il. Parallel plate validation studies are ( ¢(0,0,0), i=0
given in Sec. lll. A description of the two data sets utilized in
this study is presented in Sec. IV. Parallelization of the LB ¢(+£1,0,0,c(0,£1,0
scheme is addressed in Sec. V. Results from the LB simula- c(0,0£1), i=1,...,6
tions and comparison with laboratory measurements are pre- €= c(+1,-1,0,c(=1,0+1) (©)
sented in Sec. VI. Discussion follows in Sec. VII. Tom T e e

c(0,£1,+1), i=7,...,18
Il. THE FINITE DIFFERENCE LATTICE BOLTZMANN [ c(£1,x1,+1), i=19,...,26.

SCHEME S . C L
The equilibrium particle distribution function is

The LB method has been used as a numerical method for
simulating Navier-Stokes flow since its introduction in 1988

3(g-u) 9(g-w? 3u-
L3(&w 9(g-w” 3u-u

[16]. Attractive features of the method include its handling of ffi=Cip| 1 c2 2c% 2¢2 |’
complicated geometries, appropriate for flow through porous
media where wall boundaries are extremely irregular; the i=0 . .26 (10)

localization and ease of implementation of the computational
scheme; and relative ease of parallelization, an added attragere
tion for massive computations. On the negative side are the

extreme numbers of iterations typically needed to compute 8/27, i=0
steady state conditions; difficulties in implementing some 2027, i=1,....6
types of boundary conditions; and the limited range of physi- Ci= _ (11
cal and chemical terms that can be modeled. 154, i=7,....18
The LB method 16] is a finite difference method for solv- 1/216, i=19,...,26.
ing the Boltzmann equation for a discrete velocity distribu-
tion, Starting with a first order, upwind discretization of Eq.
(6),
) . — 2
Z_];I"'Q'Vfi:Qi"'%i i20... . N-1. (6 f(x+eAt,t+At)=f(x,t)+Q;+b(x.t)-&/(Nyc?),
¢ i=0,...N—1, (12

fi(x,t), &, andQi(x.t) are, respectively, the particle distri- 3 Chapman-Enskog expansion can be j4&lito show that
bution function, the velocity, and the collision operator in thethe macroscopic behavior of this isothermal model produces

ith direction at each space-time point. N is the number of  the Navier-Stokes equations, plus terms of orlés
discrete directions considered in the modei(x,t) is an

external body force vector that will be used to simulate a dp+d,pu,=0(M?), (13
pressure gradient to drive fluid motion;denotes particle
speed; and\,, denotes the number of the discrete directions pdiU,+pUgdgU,=—3d,P+dg(u(dgu,+d,ug))

that have nonzero projection orte. The LB method uses a
Bhathagar, Gross, and Kro¢k7] relaxation term instead of

a full nonlinear collision operator, specifically the single- ;i viscosity u, Mach numbeM, and Reynolds numbeR,
time relaxation approximationQ;=—(f;—f%/7. Here given by

f74x,t) is the local equilibrium population distribution and

+b¢+0O(M?) (14)

is the relaxation time. The first several velocity moments of pu=(7— 1/2)pc§, (15
the equilibrium population distribution must match those of a
Maxwellian distribution to ensure macroscopic Navier- M=U/cs, (16)
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pUL UL fractures, since geometries of the fracture at the two ends
= = 5 (17 involved will not be in alignment. Our solution is to double
K (r=12)cg the fracture in each periodic direction by attaching a mirror

image of the fracture at one end. The new fracture is now
ice the length, but with geometrically matching ends.
: nce we impose periodic boundary conditions inxtrandy
model iscs=c/ /3. _ _ directions, this expands the computational volume by a fac-
Note that Eq.(12) restrictsAx,=ej,At, @=1,2,3, im- 4 of 4: clearly an expensive option in terms of memory and

plying a uniform spatial grid spacing in all dimensions. For cpy time. We address this problem using parallel computa-
higher-order accuracy, and to enable different grid spacing i,

each dimension, we utilize a second-order finite difference The implementation of no-slip wall-boundary conditions

lattice Boltzmann(FDLB) solver[20] in which central dif- 155 heen the subject of some discussion. The bounce-back
ferencing is used for the spatial derivatives in the convectivg,.neme is one of the most popular implementations for com-
term, plex wall geometries; when streaming to a wall node, the
_ _ particle distribution scatters back to the node whence it
+ ; ;
i% C= FOXat A%, D) = f(Xa AX‘”'I), came. Bounce back is locally first-order accuracy at bound-
X 28X q aries[21]. A number of other schemes have been proposed
B [22—25. We have found these schemes to be complicated to
=123, (18) implement for irregularly shaped boundaries and have in-
stead implemented the following scheme for updating wall
boundary nodes and enforcing no slip.
b€ (1) An intermediate solutiorii(xb ,t+At) is generated at
5" a wall boundary poink, using Egs.(20)—(22) with the ex-
(19 ception that any second-order derivatiz in G(---,
---) is replaced by a first-order upwind derivative
The time discretization is done via second-order Runge-

U andL are, respectively, a macroscopic speed and lengt
scale characteristic of the flow. The sound speed for the;

producing the spatial discretization

o
-

1
—g-(Dif;,D3f;,D3fj) — ;(fi—fieq)+
NbC

Kutta of DuP— f(XatA"X, 1) = f(Xq 1)
X, ¢ u ’
KO= AtG; (f, (%, tn) 1), (20 A",
Ki= ALG; (f(x,t,) + kO t, + AD), 21) @=123, 23
Lo whenever a node internal to the wall would be required by
fi(X,th 1) = fi(Xt) + 3 (ki + ki), (22 the central difference formulél8). Nodes internal to the
wall are, therefore, avoided in implementing spatial differ-

where G;(f;,t) denotes the right-hand side of EG.9). A
Chapman-Enskog expansion for Eg2) replicates19] the
results of(13)—(17) with the replacement#(— 1/2)— .

Initial conditions on thef; can be set by requiring
fi(x,0)=f4p(x,0),u(x,0)) using Eq.(10). With an initial f.(xg t+ At =Fr(xy,t+AL)
velocity u=0, Eq.(10) simplifies to partitioning the density
amongst theN discrete directions at each point according to =[Fi(xp,t+ AL+ Fi(xy, t+AD)]/12, (24)
the weightsC;. Boundary conditions are generally more
problematic since the fundamental quantitiesh Eq.(6) are  where i denotes the direction opposite to This ensures
not the same as the macroscopic variables in which boundaeplicit enforcement of no-slip momentum conditions at
conditions are usually formulated. Three boundary condiwall-boundary nodes.
tions concern us in our computations, the solid rock wall Wwe have not ascertained the overall order of accuracy of
defining the upper and lower limits of the fractufie z  this mixed first- and second-order no-slip boundary condi-
direction); the inlet-outlet boundary conditions in the flow tion. Using the validation computations described in the fol-
direction (the x direction; and the flow seal restraining the lowing section, we have ascertained that the boundary con-
fracture flow in they direction. ditions produce more accurate computation of flow field in

Periodic boundary conditions are the easiest to implementhe vicinity of the wall boundary than simple bounce back.
in LB calculations. We, therefore, use periodic boundary
conditions on they direction endplanes of the fractu¢per- Ill. PARALLEL PLATE VALIDATION STUDIES
pendicular to the flow directionto approximate the flow
seal. The body force term, used to mimic a pressure gradient We have validated our FDLB solver on a slight variation
b;= VP driving the flow, obviates the need to explicitly set of a standard problem; we consider steady state Poiseuille
separate pressures at inlet and outlet. Thus periodic boundaftpw between parallel plates separated by distangevith
conditions were also used for the inlet-outlet. Using periodidhe addition of a rectangular neck of widthplaced in the
boundary conditions creates a problem when simulating redlow path. The channel geometry is shown in Fig. 1. Flow is

encing.
(2) Final update values for each wall-boundary node are
then computed as appropriate average$ vélues
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L x

FIG. 1. The geometry of parallel plates, of separatignwith a
rectangular constrictive slot of separation

induced by a constant body force in thelirection; periodic

boundary conditions are used for the inlet-outlet grtirec-

tions; the wall boundary condition is used at the plate sur

faces.
The analytic solution(u,(z),0,0) for the velocity is
known for the casé=L,,

z z
UX(Z):uma)AL_(l_L_)v ZE[OiLZ]v (25)
z z
whereun .= L2|VP|/(8u).

Figure 2 compares the prediction of E@5) with the
computational result fou,(x=5,y=5,z), for a fluid having
c=1 mm/sec and densitp=10 3 gm/mn? driven by a
pressure gradientVP|=10 ¢ gm/mmseé. Two fine grid
computations are shown, f&t,=0.1 andR,=1. (The com-
putational result is virtually independent of they coordi-
nate of the point of comparison.
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10"y
NE 1
E 107
= ] — analytic
= 10—31 X FDLBM, unconstricted
“E’ o FDLBM, constricted, fine grid
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=107 *
0 2 4 ' 8 10
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FIG. 3. Permeability vs the smallest channel width between par-
allel plates. The solid curve represents the analytical, parallel plate
solution, with separatioh. x represents computed results for paral-
lel plates of separatiof (no flow constrictiofn. Circular points
represent computed results for parallel plate of separatjomith a
restricted neck of widthh<L,.

These validation computations were done in double preci-
sion; the value of tol was set to 18
Comparisons between computed and analytic predictions

'of parallel plate permeability are shown in Fig. 3. The solid

line is the analytic predictiof2) and points marked X" are
computed results. Here the computational domainLjs
=L,=10, and L,=h is variable; p=10"3 gm/mn?, 7
=1 sec,c=1 mm/sec, andVP|=10 ° gm/mmseé. The
agreement is excellent, given the coarseness of the yxd,
=Ay=1, Az=0.2.

We now consider parallel plate flow through a constrictive
neckh<L,. Intuitively, for incompressible flow, the perme-
ability should be dominated completely by the neck wildth
This is confirmed in Fig. 3 that also plotepen and filled
circles permeabilities computed for flows through constric-
tive necks of variable widthk. The permeability through the
constrictive parallel plate geometry is determined solely by
the neck widthh, the resultant permeability is that equivalent

The computation was declared to have reached steadp flow through an unconstricted parallel plate of width

state when the relative change in the norm of the time

step velocity difference was less than input tolerance,

\/2 lu(x,t+At)—u(x,t)|?

\/ 2 luxt)[?

Rel

<tol.

(26)

0.01 1

— analytic

0.005 1 ---- FDLBM

U, (mm/s)

Re 0.1

o3 02 04 0.6 038 1

Z (mm)

2

An interesting steady state solution is obtained when the
constriction is completely closed off. Computed velocity and
density fields are shown in Fig. 4 for the cadesL,, h
=L,/3, andh=0. If there is no constrictionh(=L,), the
steady state density is constant, and the flow modeled is ef-
fectively incompressible. However, in the presence of flow
constrictions =L ,/3), density gradients appear. These den-
sity gradients arise in direct response to the body force used
to drive the flow.

In the case in which the constriction is total, rather than
zero flow (which would be expected when attempting to
drive incompressible fluid under pressure gradient into a
closed fracturgthe numerical solution shows two counter-
rotating vortices. The rotating vortices set up axebmpo-
nent of flux as summarized in the last row of Table I. In the
case of complete flow constriction, the density gradients are
achieved through the establishment of counter-rotating vorti-
ces. The presence of the density gradient is presumably due

FIG. 2. Comparison of analytic and FDLB computation for the t0 the O(M?) compressibility error terms in Eq$13) and
steady state Poiseuille flow between parallel plates. The computd14) by which the LB method deviates from incompressible
tional geometry id ,=L,=10 mm, and.,=1 mm; the grid spac- Navier-Stokes flow. As long as the constrictive channel is
ings areA,=A,=1 mm andA,=0.01 mm. open, theD(M?) terms remain “small.” When through flow
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FIG. 4. Mid-fracture transects of théeft) velocity field projected onto thez plane andright) density (gm/mm) for steady state flow
though constrictive neck geometry of Fig. 1. The domain considered’sl08 9 mn?. The illustrated computations are on a coarse grid
Ax=Ay=Az=1 mm.
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TABLE |. Total flux (mn¥/sec) through the constrictive plate cross section as a function of distance
along the flow direction. Numbers in brackets indicate power of ten.

h X (mm)
(mm) 0 2 4 5 6 8 10

9 9.896 9.896 9.896 9.896 9.896 9.896 9.896

3 1.146 1.097 1.106 1.161 1.222 1.201 1.146

0 2.4-5] 1.44 — 4] 0.0 0.0 0.0 2.37-4] 2.4 5]
is impossible, thed(M?) terms become dominant and drive a(x,y:A)=z"(x,y)—z (X,y),
the flow into a solution regime incorrect for incompressible L L
flow. =(hg —hg)—=(h"+h™),

=A-1z(x,y), (28
IV. PROFILED HARCOURT GRANITE FRACTURES

. o here the definitions oA andz are clear from context.
Laboratory measured geometrical and permeability dat’ Profilometry directly measurds (x.y) andh* (x,y), or

were obtained for a fracture in Harcourt grartéG), a me- equivalently, their sura(x,y). Determination of the constant
dium to coarse grained granite from South Australia. A single q Y, Y-

tensile fracture was produced using the so-called “Brazilian"A needed to obtain the true, unconfined, fracture aperture

technique[26]. The sample consisted of a cylindrical core a(- - -) requires careful experimental registration of the two
fractured along its axisx( direction. The core was approxi- halves of the fracture when they are separated for profilom-

mately 140 mm in diameter and 164 mm in length. We des—(;trgé;i?Ltjrrztﬁo?;eaa;;r?ggtntf’nOf dth:tclxng; az(ta.gndc')??ﬁ;;ég'
ignate thex direction to be along the core axis, and the u ! uring du xatl

direction to be “perpendicular” to the fracture surfaces. A?rndt tﬁnnea:csjurf?icr:s tlinilasrtlc %efrormtatlon asr?f)fc:l?ted Wilrt:j
116x 128 mnt area of the fracture was profiled at 1 mm actunng, and estimation procedures to account for gaps

spacing in both horizonta(y) directions[27]. Both upper duced by small amounts of loose shattered material. Such

and lower faces of the fracture were profiled with horizontalaCCOuntIng for the profiled configuration HG3 indicates a
value of A=0.19+0.03 mm.

registration between corresponding points on the wo sur- We are interested in computationally varying the aperture.

faces good to within 0.05 mm. Profile measuremeamntsli¢ . : .
. - . From Eq.(28) we can define a variable mathematical aper-
rection are accurate to within &m. We refer to this data ture

set as the mated configuration, HG3.
A second set of geometrical and _permeability data were ax,y:A D =A—t—2z(X,y). (29)
measured on the same rock, but with the two rock halves
shifted with respect to one another by 0.5 mm inxt{low)  The “push-down”t is an arbitrary parameter by which we
direction. We refer to this as the offset configuration HG3F.can artificially widen or contract the aperture of the fracture.
Note that the offset was achieved not by sliding, but by sepa¢it mimics the variable confining pressure used in laboratory
rating the mated rock halves, displacing one of them 0.5 mngxperiments to change the aperture widtNote that ast
in the axial direction, and then placing them back togetherincreases from zero, sections of the lower and upper surfaces
The profiles in the offset configuration were 111 begin to overlap, simulating contact. The overlap is unphysi-
X 128 mnt, profiled again at 1 mm spacing. cal; in real rock, under increasing confining pressure, areas
Consider an arbitrary reference plane0. The upper  of contact between the two surfaces will locally deform in a
(+) and lower () surfaces of the fracture are described bycomplex mannenVe ignore the presence of such deforma-
. R tion in our study To compensate for overlapping portions of
z'(xy)=hg —h7(xy), the surfaces under changeAnwe redefine the variable ap-
(27) erturea as
z7(x,y)=hg +h™(x,y). .
A—-t—z(x)y) if A—t—2z(x,y)>0
Hereh, andh, arezvalues relative to which® andh™ are a(xy;A )= 0 otherwise
measured. The subtraction and addition asymmetries in the ' (30)
definitions ofz* andz™ arise from a difference in sign con-
vention forh™ andh~. h* is defined to be positive in the From now on we shall refer ta(x,y;A,t) simply as the
downward directionh™ is defined to be positive in the up- aperture of our model fracture. We denote the mean aperture
ward direction This convention derives from the laboratory of a(---) asa,=(a(x,y;A,t)), where the average is over
profilometry used to measute” andh™. In profilometry, all profiling locationsx,y. We define the fractional contact
the two rock halves are laid open, side by side, fracture surareaC between the upper and lower surfaces of our model
face upward, and profiles are taken on both halWeshis  fracture as the fraction of sitesy for which a(x,y;A,t)
profilometry configurationh™ and h™ are defined with con- =0 in Eq.(30). For brevity, we shall refer t€ as the contact
sistent signsThe fracture aperture is area.
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1.0 quence of measurements with confining pressucezasing

for each new data point. Plastic strain and structural damage

0.8 ; o e
« preclude lowering confining pressure to check reproducibil-
£ 0.6- ity. Typically each permeability measurement involved mea-
g 04 suring the time to flow 25 mL of water through the fracture.
e S dn

024 V. PARALLELIZATION

005% o5 o With the data profiled at 1 mm spacing in theandy

mean aperture (mm) directions, interpolation must be used if a finer numerical
horizontal grid spacing is desired. We avoid interpolation and
FIG. 5. Contact are& as a function of mean aperture for the useAx=Ay=1.0 mm. In the case of the mated configura-
two profiled configurations HG&mated and HG3F(offses. tion HG3, when the contact aré=0, the maximum value
_ of the aperture profile is max z(x,y)=12.09 mm and the
Figure 5 plots the contact ar€abetween the two surfaces mean aperture is 0.94 mm. At a near-percolation threshold
as a function of mean apertuag, for both mated and offset yalue ofC=0.5, while the mean aperture of 0.09 mm is now
configurations. It is important to note that t¥a,,) rela-  much smaller,z,,,=11.29 mm is still large. Thus with a
tionship in Fig. 5is independent of choice of. AIf Alis  grid spacing ofAz=0.05 mm, the numerical grid size will
changed, then the push-dowrequired to achieve a specific require 11x 10°—~14x 10° nodes.(Recall the doubling of the
value of a,, will also change, resulting in the sana,,C  fracture in thex and y directions to implement periodic
point in Fig. 5) The C(ay,) relationship is solely a property houndary conditiony.As a compromise between memory
of the measured profile(x,y). requirement, CPU time, and communication cost, we store
Our interest is in computing permeability as a function offoyr  single precision floats 9 t), fi(e--ut),
mean aperture and comparing with laboratory measurementg.(. .. ¢ 4+ At) from Eq.(21), andf(- - - ,t,,+,) for each link

Consequently it is useful to know at what contact area, coMyf each node. For 3D27Q, we, therefore, store 432 bytes of
plete loss of flow in the fr_acture can be expectéthis is  information per node. Thus a naive computation gives
referred to as the percolation threshold of the fracjure. memory requirements of 6 Gbytes for a computation on a
The percolation threshold was estimated using mediab3ox 256x 243 node grid. A major savings in memory is
axis analysi$28,29. Briefly, for each value o€, the medial  5ccomplished by assigning no storage to any node lying out-
axis transform was used to trace all possible paths throug§ige of the open aperture regiowith an exception for wall
the aperture connecting “inlet” to “outlet.” If any inlet-to- boundary nodes Depending on the contact area, this re-
outlet connection existed, the fracture was deemed capablg;ces memory requirements to 2—16 % of the naive value.
of supporting flow. Using a bisection search @nbounding  gyen with this reduction, parallel implementation is required.
values on the percolation threshold contact area for flowpa gjielization was done using nonoverlapping, “bread
separately in the andy directions were obtained as shown gjice » domain decomposition in the flow direction. Load
in Table Il. _ balancing was achieved by adjusting the widths of individual
Permeabilities were experimentally measured for HG3jomain slices so that the each contained approximately the
and HG_3F under steady state flow conditions using tap waté{sme number of aperture nodes. Message passing was done
as a fluid. All measurements were made at room temperaturgith the MPI interface. Computations were performed on the
The outlet pressure was fixed at 0.1 MBaatm. For the  giony Brook Galaxy, a Beowolf class cluster having 256
mated fracture, HG3, confining pressures var_|e_d from 0.2bentium processors, each processor having 512 Mbytes of
MPa to 80 MPa, and pressure differences driving the flowgaw. parallel performance of the FDLB implementation is
varied from 5 KPa at the lowest confining pressure, t0 1Qjiscyssed in Ref[29]. Typically, a simulation required
MPa at the highest. For the offset fracture HG3F COI’]fInII’Ignea”y 340 h using 8 Pentium Il processors to achieve steady

pressures varied from 0.1 MPa to 160 MPa, and pressurgie [as determined by Eq(26) with a tolerance tol
differences driving the flow varied from 120 Pa at the lowest_ 1079] in ~10° iterations.

confining pressure to 4.4 KPa at the highest. Permeability
was determined from E@l) using the cross sectional area of
the cylindrical core face at the outlet. The laboratory perme- VI. NUMERICAL RESULTS

ability measurements on a fracture were performed as a se- In parallel with the laboratory permeability measurements

o _ ~ performed on HG3 and HG3F, we numerically compute
TABLE II. Bounding intervals determined for percolation e steady state flow of water u&0.001 Pasep
threshold value<, and C, of contact area irx andy directions, =0.001 gm/mn%) through the fracture. The particle spea,ad

respectively. required in the LB formulation was chosen as a multiple of
c c the average velocity of the water measured in the corre-
X y sponding experiment. Mach numbers varied but were in the

HG3 (0.441,0.46Y (0.623,0.645 range from 102 to 10" 1. While pressure gradients were not
HG3F (0.560,0.588 (0.430,0.463 available for all experimental measurements, pressure drops

across the cylinder core were measured for the lowest and
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FIG. 6. Comparison between comput&®LBM), experimental FIG. 7. Comparison between comput@eDLBM) and experi-

(HG3), parallel plate model, and E¢31) values of permeability  mental(HG3F values of permeability versus contact atéor the
versus mean aperture for the mated Harcourt granite fracture.  5tcet Harcourt granite fracture.

highest confining pressure runs. Pressure gradients for inteRottom surfaces of the fracture may require a recalibration of
mediate confining pressures were approximated using linedfe constanf in Eq. (28). As mean aperture is a very sen-
interpolation. sitive variable(i.e., small errors result in comparatively large

Figure 6 summarizes the comparison between the confn@nges irk), we, therefore, compare measured and com-
uted permeabilities for the offset fracture as a function of a

puted and measured values of permeability versus mean a ; ;
ore robust variable, the contact a@alo estimate contact

erture for the mated fracture HG3. The mean aperture valu for the offset f i te that N
for the laboratory measurements are mechanical mean ap(?r[eas or the ofiset configuration, we note that measurements

tures, computed from fracture closure measurements. TH n a similar tensile-induced, offset fracture in Westerly gran-
Iabor:';ltory permeability measurements were normalized by© [14] found surface contact ratios of approximately 20% at

the cross sectional area of the cylindrical core. Since th onfining pressures of 160 MPi/e therefore assume that

entire cross sectional area was not modeled numerically, th € laboratory range of measured mean apertures for HG3F

S o
numerical permeabilities were normalized to agree with thecorrespond to surface cont{:\ct ra.t|os in the range 0 to 20%
d presume a linear relationship between confining pres-

laboratory measurements at the highest mean aperture settif} d ; tact for the laborat
(lowest confining pressure on the fractur&éhe numerical S retaFTh_sur ace at[_ea (_:onlac_ or eda '(t)r:ihory mtezséjrf-
permeabilities tend to exceed the experimental permeabilitie entsinis assumption 1S aiso in accord wi € mated data

(worst case is a factor of 1(ut capture the experimental G3. From F'g'. 6 note th‘?lt mean apertures vary from 0.2
permeability trend very well. down to 0.1, which, from Fig. 5, correspond to contact areas

The prediction of the parallel plate model, based upon from 0 to 10%. As the mated configuration was subjected to

an als0 shown in Fig. & does very poorly in capturing theg, iER LR SO AT BYER R 0 Tk 0 R T e o
trend. So will Eq.(3) for any constant value of. This is P

hardly unexpected, our simple constricted-neck parallel platggur_anon) i
. L Figure 7 compares measured and computed permeabilities
model would lead us to conclude that, is a poor indicator

of the constrictive fracture width value that is effectively I:(;rl tggr:ﬁjgtigﬁgux:rgs 2rig?$'e°d”@c’;%°”éaggagei- gli’ge”'
controlling the flow rate. p p , 0.05, 0.1, 0.15,

There is a problem in applying the Zimmerman- and 0.2 and compare surprisingly well with the laboratory

Bodvarson(ZB) prediction(5) to our fracture—the standard measurements. Note repeated laboratory permeability mea-

deviation of the fracture aperture is 70% of the true, uncon-Surements at several values Of For these measurements,

' h nfining pr re was hel nstant an veral perme-
fined, mean aperture and becomes larger than the mean e co g pressure was held constant and several perme

ap-. . : )
erture at 7% contact area=0.13). Thus any factor of the gbl“ty measurements taken over a period of pme. The largest

5 . . . set of measurements were taken at a confining pressure of
form 1—a(on/h)° as used in Eq(5) is going to have a

sharp “knee” behavior and very rapidly become negative at140 MPa (contact area of 0.175where five permeability

T o easurements were taken o2e5 hperiod. A slow decrease
some mean aperture value. This is demonstrated in Fig. i, A .
) ) L IN permeability with time is observed in all such repeated
using a generalized ZB prediction

measurements for this fracture. We postulate that the time
dependent decrease in permeability is due to increased clog-
ging resulting from the movement of fines, the clogging oc-
curring either in the fracture or in the fluid collection tubing
at the outlet. We further note that the set of permeability
measurements taken &=0.2 were performed a day later

h? O'ﬁ
k=l—2<l—aﬁ)(l—2C), (31

for parameter valuea=0.9,1.0. We also note that the con- han the others: th fini d
tact area factor (£ 2C) plays little role in the accuracy of than the others; the confining pressure was removed over-

the fit (31) to the experimental data. night and then reapplied the next day.

For the offset data, HG3F, we have been unable to recon-
cile the mechanical mean apertures measured during the
laboratory experiments with the mathematical mean aper- There are clearly several factors that affect the agreement
tures computed from the profiled data. Offsetting the top andhetween the numerical and experimental results.

VII. DISCUSSION
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One factor is the discretization of the fracture surface.The overall effect of these variations on the resultant flow is
With profiling locations spaced at 1 mm, we are resolving theunknown.
surface feature only above wavelengths of 1 mm; the effect While the LB implementation used here gives reasonably
on flow for features below 1 mm wavelength is of unknowngood permeability predictions, the computational cycles re-
magnitude. A second feature of discretization is the “Man-quired to compute steady state flow are very large. Several
hattan” skyline nature of a discretized surface, which makesteps can be implemented to improve the computational
computation of surface-surface contact area easier, but sinime. Use of the 15-velocity, 3D15Q25] should improve
plifies the true “mountain” topography of a fracture surface. the speedland memory by a factor of almost 2 without

Ignoring stresses induced in the surfaces when numeriaccuracy loss. Use of direct inlet-outlet pressure conditions
cally pushing the fracture surfaces together is a second fa¢25] rather than imposing a body force to drive the flow
tor. The elastic and plastic changes so induced in the surfasgould obviate the need to double the domain in the flow
profiles of a real fracture were not captured in the numericatlirection, again at a factor of two savings in speed and
aperture. The numerical “push-through” of the fracture sur-memory. The time independent LB method developed in Ref.
faces also produces missing mass that remains unaccounte&0] would be expected to improve the computational perfor-
for. mance by a factor of 1-2 orders of magnitude, depending on

The absence of recorded values for fluid pressure gradimean aperture. It would be interesting to investigate all of
ents for some of the experimental measurements, and thtbese three improvements in the context of the nonconstant
decision to use contact area as the comparing parameter fgrid spacing finite difference method.
the offset data, lead to the use of linear interpolation to pro-

V|d_e necessary numerical pare}meters. The error introduced in ACKNOWLEDGMENTS
using the interpolated values is unknown.
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